Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Inflamm (Lond) ; 20(1): 11, 2023 Mar 20.
Article in English | MEDLINE | ID: covidwho-2280045

ABSTRACT

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can be asymptomatic or cause a disease (COVID-19) characterized by different levels of severity. The main cause of severe COVID-19 and death is represented by acute (or acute on chronic) respiratory failure and acute respiratory distress syndrome (ARDS), often requiring hospital admission and ventilator support.The molecular pathogenesis of COVID-19-related ARDS (by now termed c-ARDS) is still poorly understood. In this review we will discuss the genetic susceptibility to COVID-19, the pathogenesis and the local and systemic biomarkers correlated with c-ARDS and the therapeutic options that target the cell signalling pathways of c-ARDS.

2.
Mucosal Immunol ; 15(6): 1405-1415, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2133297

ABSTRACT

Multiple SARS-CoV-2 vaccine candidates have been approved for use and have had a major impact on the COVID-19 pandemic. There remains, however, a significant need for vaccines that are safe, easily transportable and protective against infection, as well as disease. Mucosal vaccination is favored for its ability to induce immune memory at the site of infection, making it appealing for SARS-CoV-2 vaccine strategies. In this study we performed in-depth analysis of the immune responses in mice to a subunit recombinant spike protein vaccine formulated with the delta-inulin adjuvant Advax when administered intratracheally (IT), versus intramuscular delivery (IM). Both routes produced robust neutralizing antibody titers (NAb) and generated sterilizing immunity against SARS-CoV-2. IT delivery, however, produced significantly higher systemic and lung-local NAb that resisted waning up to six months post vaccination, and only IT delivery generated inducible bronchus-associated lymphoid tissue (iBALT), a site of lymphocyte antigen presentation and proliferation. This was coupled with robust and long-lasting lung tissue-resident memory CD4+ and CD8+ T cells that were not observed in IM-vaccinated mice. This study provides a detailed view of the lung-resident cellular response to IT vaccination against SARS-CoV-2 and demonstrates the importance of delivery site selection in the development of vaccine candidates.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Humans , Inulin , COVID-19 Vaccines , CD8-Positive T-Lymphocytes , Immunologic Memory , Pandemics , COVID-19/prevention & control , Immunization , Vaccines, Synthetic , Vaccination , Adjuvants, Immunologic , Gastric Mucosa , Lung
3.
Am J Respir Crit Care Med ; 206(6): 712-729, 2022 09 15.
Article in English | MEDLINE | ID: covidwho-2038405

ABSTRACT

Rationale: Patients with chronic obstructive pulmonary disease (COPD) develop more severe coronavirus disease (COVID-19); however, it is unclear whether they are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and what mechanisms are responsible for severe disease. Objectives: To determine whether SARS-CoV-2 inoculated primary bronchial epithelial cells (pBECs) from patients with COPD support greater infection and elucidate the effects and mechanisms involved. Methods: We performed single-cell RNA sequencing analysis on differentiated pBECs from healthy subjects and patients with COPD 7 days after SARS-CoV-2 inoculation. We correlated changes with viral titers, proinflammatory responses, and IFN production. Measurements and Main Results: Single-cell RNA sequencing revealed that COPD pBECs had 24-fold greater infection than healthy cells, which was supported by plaque assays. Club/goblet and basal cells were the predominant populations infected and expressed mRNAs involved in viral replication. Proteases involved in SARS-CoV-2 entry/infection (TMPRSS2 and CTSB) were increased, and protease inhibitors (serpins) were downregulated more so in COPD. Inflammatory cytokines linked to COPD exacerbations and severe COVID-19 were increased, whereas IFN responses were blunted. Coexpression analysis revealed a prominent population of club/goblet cells with high type 1/2 IFN responses that were important drivers of immune responses to infection in both healthy and COPD pBECs. Therapeutic inhibition of proteases and inflammatory imbalances reduced viral titers and cytokine responses, particularly in COPD pBECs. Conclusions: COPD pBECs are more susceptible to SARS-CoV-2 infection because of increases in coreceptor expression and protease imbalances and have greater inflammatory responses. A prominent cluster of IFN-responsive club/goblet cells emerges during infection, which may be important drivers of immunity. Therapeutic interventions suppress SARS-CoV-2 replication and consequent inflammation.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Serpins , Cytokines , Epithelial Cells , Humans , Peptide Hydrolases , Pulmonary Disease, Chronic Obstructive/drug therapy , SARS-CoV-2 , Sequence Analysis, RNA , Serpins/pharmacology , Serpins/therapeutic use
4.
NPJ Vaccines ; 6(1): 143, 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1545614

ABSTRACT

Global control of COVID-19 requires broadly accessible vaccines that are effective against SARS-CoV-2 variants. In this report, we exploit the immunostimulatory properties of bacille Calmette-Guérin (BCG), the existing tuberculosis vaccine, to deliver a vaccination regimen with potent SARS-CoV-2-specific protective immunity. Combination of BCG with a stabilised, trimeric form of SARS-CoV-2 spike antigen promoted rapid development of virus-specific IgG antibodies in the blood of vaccinated mice, that was further augmented by the addition of alum. This vaccine formulation, BCG:CoVac, induced high-titre SARS-CoV-2 neutralising antibodies (NAbs) and Th1-biased cytokine release by vaccine-specific T cells, which correlated with the early emergence of T follicular helper cells in local lymph nodes and heightened levels of antigen-specific plasma B cells after vaccination. Vaccination of K18-hACE2 mice with a single dose of BCG:CoVac almost completely abrogated disease after SARS-CoV-2 challenge, with minimal inflammation and no detectable virus in the lungs of infected animals. Boosting BCG:CoVac-primed mice with a heterologous vaccine further increased SARS-CoV-2-specific antibody responses, which effectively neutralised B.1.1.7 and B.1.351 SARS-CoV-2 variants of concern. These findings demonstrate the potential for BCG-based vaccination to protect against major SARS-CoV-2 variants circulating globally.

5.
Immunity ; 54(12): 2908-2921.e6, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1521063

ABSTRACT

Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Second-generation vaccines will need to elicit neutralizing antibodies against sites that are evolutionarily conserved across the sarbecovirus subgenus. Here, we immunized mice containing a human antibody repertoire with diverse sarbecovirus receptor-binding domains (RBDs) to identify antibodies targeting conserved sites of vulnerability. Antibodies with broad reactivity against diverse clade B RBDs targeting the conserved class 4 epitope, with recurring IGHV/IGKV pairs, were readily elicited but were non-neutralizing. However, rare class 4 antibodies binding this conserved RBD supersite showed potent neutralization of SARS-CoV-2 and all variants of concern. Structural analysis revealed that the neutralizing ability of cross-reactive antibodies was reserved only for those with an elongated CDRH3 that extends the antiparallel beta-sheet RBD core and orients the antibody light chain to obstruct ACE2-RBD interactions. These results identify a structurally defined pathway for vaccine strategies eliciting escape-resistant SARS-CoV-2 neutralizing antibodies.


Subject(s)
Betacoronavirus/physiology , COVID-19 Vaccines/immunology , Coronavirus Infections/immunology , Severe acute respiratory syndrome-related coronavirus/physiology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Conserved Sequence/genetics , Evolution, Molecular , Humans , Immunization , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Binding , Protein Domains/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccine Development
6.
Immunity ; 2021.
Article in English | EuropePMC | ID: covidwho-1489418

ABSTRACT

Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Burnett et al. immunized humanized mice with different diverse sarbecovirus RBDs to elicit antibodies targeting conserved sites. Non-neutralizing cross-reactive antibodies targeting the conserved class 4 epitope were readily elicited. Neutralizing ability was reserved only for antibodies binding this conserved supersite through an elongated CDRH3 that obstructed ACE2-RBD interactions.

7.
Pharmacol Ther ; 225: 107839, 2021 09.
Article in English | MEDLINE | ID: covidwho-1152612

ABSTRACT

Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-ß induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.


Subject(s)
Lung Diseases/drug therapy , Lung Diseases/physiopathology , Airway Remodeling/physiology , Asthma/drug therapy , Asthma/physiopathology , Calcium-Binding Proteins/metabolism , Extracellular Matrix/metabolism , Fibroblasts , Fibrosis/physiopathology , Glycoproteins/metabolism , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/physiopathology , Matrix Metalloproteinases/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/physiopathology , Transforming Growth Factor beta
8.
Chem Biol Interact ; 325: 109125, 2020 Jul 01.
Article in English | MEDLINE | ID: covidwho-165367

ABSTRACT

The apparent predicament of the representative chemotherapy for managing respiratory distress calls for an obligatory deliberation for identifying the pharmaceuticals that effectively counter the contemporary intricacies associated with target disease. Multiple, complex regulatory pathways manifest chronic pulmonary disorders, which require chemotherapeutics that produce composite inhibitory effect. The cost effective natural product based molecules hold a high fervor to meet the prospects posed by current respiratory-distress therapy by sparing the tedious drug design and development archetypes, present a robust standing for the possible replacement of the fading practice of poly-pharmacology, and ensure the subversion of a potential disease relapse. This study summarizes the experimental evidences on natural products moieties and their components that illustrates therapeutic efficacy on respiratory disorders.


Subject(s)
Molecular Targeted Therapy/methods , Plant Extracts/pharmacology , Respiratory Tract Diseases/drug therapy , Animals , Chronic Disease , Humans , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Respiratory Tract Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL